Preface: Complex Power Problems will either be presented with RMS (Root Mean Square) values or Maximum values. You can convert between the two, but you have to stick with one.

Conjugate	$(a+bi)^* = a-bi$
RMS-Maximum Conversion	$X_{RMS} = \frac{1}{\sqrt{2}}X_m$ and $X_M = \sqrt{2}X_{RMS}$
Complex Power (VA)	S = P + Qj
Complex Power for a Source (VA)	$S = \frac{1}{2} V_m I_m^* = V_{RMS} I_{RMS}^*$
Complex Power for an Element (VA)	$S = \frac{1}{2} I_m I_m^* Z = I_{RMS} I_{RMS}^* Z$
Real/Average Power (W)	$P = \frac{V_{mm}^{I}}{2}cos(\theta_{v} - \theta_{i})$
Imaginary/Reactive Power (VAR)	$Q = \frac{V_{m^{I}m}}{2} sin(\theta_{v} - \theta_{i})$
Power Factor (Degrees)	$pf = cos(\theta_v - \theta_i)$
Reactive Factor (Degrees)	$rf = sin(\theta_v - \theta_i)$

 $P_{avg} = |I_{RMS}^2| \bullet R$ Average Power (W)

Apparent Power $|S| = \sqrt{P^2 + Q^2}$ (Magnitude of Complex Power)